HDU-6189

题意

给出 $n(\le 30), a(1\le a\le 1e9)$ , 求在 $[1,2^n]$ 范围内有多少个 $b$ 能够满足 $a^{b} \equiv b^{a}(\bmod 2^n)$

题解

https://blog.csdn.net/hyesuixin/article/details/77855821

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <bits/stdc++.h>
using namespace std;
#define forl(i, l, r) for (int i = l; i <= r; i++)
#define forr(i, r, l) for (int i = r; i >= l; i--)
#define for1(i, n) for (int i = 1; i <= n; i++)
#define fro1(i, n) for (int i = 1; i <= n; i++)
#define for0(i, n) for (int i = 0; i < n; i++)
#define fro0(i, n) for (int i = 0; i < n; i++)
#define meminf(a) memset(a, inf, sizeof(a))
#define mem_1(a) memset(a, -1, sizeof(a))
#define mem0(a) memset(a, 0, sizeof(a))
#define memcp(a,b) memcpy(a,b,sizeof(b))
#define oper(type) bool operator <(const type y)const
#define mp make_pair
#define pu_b push_back
#define pu_f push_front
#define po_b pop_back
#define po_f pop_front
#define fi first
#define se second
#define whiel while
#define retrun return
typedef pair<long long, long long> pll;
typedef vector<long long> vll;
typedef pair<int, int> pii;
typedef unsigned long long ull;
typedef vector<int> vii;
typedef long double db;
typedef long long ll;
typedef int itn;
int in(int &a,int &b,int &c,int &d){return scanf("%d%d%d%d",&a,&b,&c,&d);}
int in(int &a,int &b,int &c){return scanf("%d%d%d",&a,&b,&c);}
int in(int &a,int &b){return scanf("%d%d",&a,&b);}
int in(ll &a){return scanf("%lld",&a);}
int in(int &a){return scanf("%d",&a);}
int in(char *s){return scanf("%s",s);}
int in(char &s){return scanf("%c",&s);}
int in(db &a){return scanf("%Lf",&a);}
void out(int a){printf("%d ",a);}
void outln(int a){printf("%d\n",a);}
void out(ll a){printf("%lld ",a);}
void outln(ll a){printf("%lld\n",a);}
const db pi = acos((db)-1);
const ll inf =0x3f3f3f3f;
const db eps = 1e-8;
const int N = 2.1e5;
const ll mod = 1e9+7;
int sign(db a) { return a < -eps ? -1 : a > eps;}
int db_cmp(db a, db b){ return sign(a-b); }

ll qPow(ll a, ll b, ll c) { //求(a^b) % c
ll ret = 1;
while (b) {
if (b & 0x1) ret = ret * a % c;
a = a * a % c;
b >>= 1;
}
return ret;
}
int main() {
int n,a;
whiel(~in(n,a)){
int ta=a,k=0,maxn=1<<n;
whiel(ta%2==0){
k++;
ta/=2;
}
if(k&&n){
itn kk=n/a;
if(n%a)kk++;
int ans=0;
int low=n/k;
if(n%k==0)low--;
for1(i,low){
if(qPow(a,i,maxn)==qPow(i,a,maxn))ans++;
}
kk=1<<kk;
ans+=(1<<n)/kk-low/kk;
outln(ans);
}else {
puts("1");
}
}
return 0;
}